Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Microbiol Spectr ; 11(1): e0359122, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2193575

ABSTRACT

Multiple mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) increase transmission, disease severity, and immune evasion and facilitate zoonotic or anthropozoonotic infections. Four such mutations, ΔH69/V70, L452R, E484K, and N501Y, occurred in the SARS-CoV-2 spike glycoprotein in combinations that allow the simultaneous detection of VOCs. Here, we present two flexible reverse transcription-quantitative PCR (RT-qPCR) platforms for small- and large-scale screening (also known as variant PCR) to detect these mutations and schemes for adapting the platforms to future mutations. The large-scale RT-qPCR platform was validated by pairwise matching of RT-qPCR results with whole-genome sequencing (WGS) consensus genomes, showing high specificity and sensitivity. Both platforms are valuable examples of complementing WGS to support the rapid detection of VOCs. Our mutational signature approach served as an important intervention measure for the Danish public health system to detect and delay the emergence of new VOCs. IMPORTANCE Denmark weathered the SARS-CoV-2 crisis with relatively low rates of infection and death. Intensive testing strategies with the aim of detecting SARS-CoV-2 in symptomatic and nonsymptomatic individuals were available by establishing a national test system called TestCenter Denmark. This testing regime included the detection of SARS-CoV-2 signature mutations, with referral to the national health system, thereby delaying outbreaks of variants of concern. Our study describes the design of the large-scale RT-qPCR platform established at TestCenter Denmark in conjunction with whole-genome sequencing to report mutations of concern to the national health system. Validation of the large-scale RT-qPCR platform using paired WGS consensus genomes showed high sensitivity and specificity. For smaller laboratories with limited infrastructure, we developed a flexible small-scale RT-qPCR platform to detect three signature mutations in a single run. The RT-qPCR platforms are important tools to support the control of the SARS-CoV-2 endemic in Denmark.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reverse Transcription , COVID-19/diagnosis , Polymerase Chain Reaction , Mutation
2.
PLoS One ; 17(10): e0274889, 2022.
Article in English | MEDLINE | ID: covidwho-2054348

ABSTRACT

Fast surveillance strategies are needed to control the spread of new emerging SARS-CoV-2 variants and gain time for evaluation of their pathogenic potential. This was essential for the Omicron variant (B.1.1.529) that replaced the Delta variant (B.1.617.2) and is currently the dominant SARS-CoV-2 variant circulating worldwide. RT-qPCR strategies complement whole genome sequencing, especially in resource lean countries, but mutations in the targeting primer and probe sequences of new emerging variants can lead to a failure of the existing RT-qPCRs. Here, we introduced an RT-qPCR platform for detecting the Delta- and the Omicron variant simultaneously using a degenerate probe targeting the key ΔH69/V70 mutation in the spike protein. By inclusion of the L452R mutation into the RT-qPCR platform, we could detect not only the Delta and the Omicron variants, but also the Omicron sub-lineages BA.1, BA.2 and BA.4/BA.5. The RT-qPCR platform was validated in small- and large-scale. It can easily be incorporated for continued monitoring of Omicron sub-lineages, and offers a fast adaption strategy of existing RT-qPCRs to detect new emerging SARS-CoV-2 variants using degenerate probes.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/genetics , Genome, Viral/genetics , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Epidemiol Infect ; 150: e123, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1758079

ABSTRACT

Denmark hosted four games during the 2020 UEFA European championships (EC2020). After declining positive SARS-CoV-2 test rates in Denmark, a rise occurred during and after the tournament, concomitant with the replacement of the dominant Alpha lineage (B.1.1.7) by the Delta lineage (B.1.617.2), increasing vaccination rates and cessation of several restrictions. A cohort study including 33 227 cases was conducted from 30 May to 25 July 2021, 14 days before and after the EC2020. Included was a nested cohort with event information from big-screen events and matches at the Danish national stadium, Parken (DNSP) in Copenhagen, held from 12 June to 28 June 2021. Information from whole-genome sequencing, contact tracing and Danish registries was collected. Case-case connections were used to establish transmission trees. Cases infected on match days were compared to cases not infected on match days as a reference. The crude incidence rate ratio (IRR) of transmissions was 1.55, corresponding to 584 (1.76%) cases attributable to EC2020 celebrations. The IRR adjusted for covariates was lower (IRR 1.41) but still significant, and also pointed to a reduced number of transmissions from fully vaccinated cases (IRR 0.59). These data support the hypothesis that the EC2020 celebrations contributed to the rise of cases in Denmark in the early summer of 2021.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Cohort Studies , Denmark/epidemiology , Humans
4.
Euro Surveill ; 27(10)2022 03.
Article in English | MEDLINE | ID: covidwho-1742167

ABSTRACT

Following emergence of the SARS-CoV-2 variant Omicron in November 2021, the dominant BA.1 sub-lineage was replaced by the BA.2 sub-lineage in Denmark. We analysed the first 2,623 BA.2 cases from 29 November 2021 to 2 January 2022. No epidemiological or clinical differences were found between individuals infected with BA.1 versus BA.2. Phylogenetic analyses showed a geographic east-to-west transmission of BA.2 from the Capital Region with clusters expanding after the Christmas holidays. Mutational analysis shows distinct differences between BA.1 and BA.2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Denmark/epidemiology , Humans , Molecular Epidemiology , Phylogeny , SARS-CoV-2/genetics
5.
Euro Surveill ; 26(50)2021 12.
Article in English | MEDLINE | ID: covidwho-1593153

ABSTRACT

By 9 December 2021, 785 SARS-CoV-2 Omicron variant cases have been identified in Denmark. Most cases were fully (76%) or booster-vaccinated (7.1%); 34 (4.3%) had a previous SARS-CoV-2 infection. The majority of cases with available information reported symptoms (509/666; 76%) and most were infected in Denmark (588/644; 91%). One in five cases cannot be linked to previous cases, indicating widespread community transmission. Nine cases have been hospitalised, one required intensive care and no deaths have been registered.


Subject(s)
COVID-19 , SARS-CoV-2 , Denmark/epidemiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL